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Abstract

We present an experimental study of different strate-
gies for triangulating polygons in parallel. As usual,
we call three consecutive vertices of a polygon an ear if
the triangle that is spanned by them is completely in-
side the polygon. Extensive tests on thousands of sam-
ple polygons indicate that about 50% of the vertices of
most polygons form ears, which suggests that polygon-
triangulation algorithms based on ear-clipping might be
well-suited for parallelization. We discuss three differ-
ent on-core approaches to parallelizing ear clipping and
report on our experimental findings. Extensive tests
show that the most promising method achieves an av-
erage speedup of about 3 on a quad-core processor.

1 Introduction

Three consecutive vertices (vi−1, vi, vi+1) form an ear
of a simple polygon P if vi−1, vi+1 is a diagonal of P .
Cutting along this diagonal removes the vertex vi, the
“base” of the ear, thus reducing the number of ver-
tices of P by one. The basic idea of ear clipping is
to iteratively cut off ears until the polygon has shrunk
to a triangle. The algorithm’s correctness hinges upon
Meisters’ two-ears theorem which states that every non-
trivial simple polygon has at least two non-overlapping
ears [3].

A typical ear-clipping algorithm operates in two
phases. Classification: iterate along P to determine all
instances of three consecutive vertices that form an ear
of P . These potential ears are stored in a queue. Clip-
ping: iteratively pick a candidate ear from the queue
and clip it if it is still valid. As an ear (vi, vj , vk) is
clipped and stored in a triangle list, its two outer ver-
tices vi and vk have to be checked to determine whether
they form the bases of new ears now. Every new ear is
added to the queue. The process ends for an n-vertex
polygon when n− 3 ears have been clipped.

Held’s fast industrial-strength triangulation tool
FIST [2] is a polygon triangulation framework based on
ear-clipping. While the basic ear-clipping algorithm has
an O(n2) worst-case complexity, FIST employs multi-
level geometric hashing to speed up the computation to
near-linear time for almost all inputs.
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Surprisingly little work has been done on computing
triangulations of simple polygons in parallel. The lit-
erature focuses mostly on (Delaunay) triangulations of
point sets rather than polygons, see for instance Rong
et al. [5] and Xin et al. [7]. In 2013, Qi et al. [4] in-
troduced a primarily GPU-based algorithm to compute
constrained Delaunay triangulations.

We analyzed the prevalence of ears in our vast set of
test data and find that in most polygons about half the
vertices form the bases of ears. If we look only at convex
vertices then a vast majority (98 %) of them belong to
ears. This suggests that clipping many ears simultane-
ously is feasible. Our contribution are three algorithms
for parallelizing ear-clipping on a multi-core processor,
which we implemented and tested extensively.

2 Parallel Ear-Clipping Algorithms

We discuss three algorithms for extending the classic
FIST tool such that it can operate in parallel. The
algorithms differ in how they split the polygon and its
ears such that the subsequent ear clipping can be carried
out in parallel.

Divide and Conquer. The basic idea is to split the
polygon P into as many independent, equally sized sub-
polygons as CPU cores are available. Since it seems
costly to determine suitable diagonals that achieve bal-
anced splits, we simply use vertical lines to split the
polygon. Using a variant of the Sutherland-Hodgman
polygon clipping algorithm [6], we can split a polygon
along a line ` (which does not pass through a vertex of
P ) in timeO(n), at a cost of at mostO(n) Steiner points
caused by the number of intersections between ` and the
polygon boundary. In our tests, the number of Steiner
points seems to be bounded by

√
n for almost all but

contrived inputs. We then run one (sequential) FIST
instance per core to obtain a triangulation of each sub-
polygon. Glueing the triangulations of all sub-polygons
together yields a triangulation of P , albeit with Steiner
points which have to be removed.

So consider a pair of Steiner points sa, sb that are
consecutive along `: We create a hole H by removing
all triangles incident in sa, sb. Since sa, sb lie in the
interiors of edges of the boundary of H and since H is
“double-star-shaped”, the hole H can be triangulated
easily without re-creating triangles incident to sa or sb.
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Partition and Cut. In this approach, we pick k
equally-spaced vertices along the boundary of the poly-
gon and partition the boundary into k chains, one for
each thread. (Two adjacent chains then always share
one of these selected vertices.) In order to run parallel
classification steps, one for each chain, we use a per-
thread queue to store potential ears instead of a single
global queue. Then, in the clipping phase, each thread
processes all ears from its queue. As usual, clipping
the ear (vi−1, vi, vi+1) involves checking whether vi±1

has become the basis of a new ear. However it is only
added to the queue if it is not a vertex shared with a
neighboring chain. Since each thread only clips ears in
its own chain and care is taken to never remove vertices
shared between chains, both the classification and clip-
ping step of each thread can run independently of other
threads.

After all k queues are empty and the parallel clipping
threads have ended, some part of the original polygon
remains untriangulated. This part is then processed
using a final, sequential run of FIST which completes
the triangulation of the polygon.

Mark and Cut. The key observation of this approach
is the following: Every second ear along the polygon’s
boundary is non-overlapping. Therefore, we can pro-
cess every second ear and clip it independently from all
other ears. The phases used by this approach thus differ
slightly from the previous two algorithm: In the mark
phase, we walk along the polygon boundary and store
the index of every second vertex in an array A. In the
cut phase, which can be run by many threads in paral-
lel, we consider every vertex in A, and if it forms the
basis of an ear we clip it immediately.

One thread is tasked with running the mark phase.
As soon as it has processed half of the polygon bound-
ary, the remaining threads launch a cut phase on the in-
dices stored in A so far while the first thread continues
until it has processed the remainder of the boundary.

Once all threads are finished, the cutting threads are
re-launched on the vertices that have since been added
to A. The marking thread now revisits what remains
after the parallel ear-clipping on the first half of the
polygon boundary. This continues until only a small
number of ears are found in a cut phase. (In our tests
we switched to the sequential FIST once fewer than 20
new triangles were generated in one cutting phase.) We
then use one sequential run of FIST on the remaining
polygon to finish the triangulation.

3 Experimental Results

We implemented all three parallel variants of FIST as
an on-core parallelization by the use of OpenMP/C++.
Our test system runs CentOS 6.5 on an 2014 Intel Xeon

E5-2667 v3 CPU at 3.20 GHz with 8 cores and 132 GB
RAM.

Our implementations were tested on about 20 000
polygons with up to four million vertices per in-
put, consisting of both real-world and synthetic data
that exhibits various characteristics. The test data
was collected over the past 30 years by Martin Held
and includes proprietary CAD/CAM designs, sampled
printed-circuit board layouts, geographic maps, sam-
pled spline curves and font outlines, closed fractal and
space filling curves, as well as star-shaped and various
types of “random” polygons generated by RPG [1].

In our tests, we compare the runtime of our paral-
lel algorithms to the runtime of the sequential FIST
tool. With eight cores a speedup of about 3 is observed
with both the mark-and-cut and the partition-and-cut
variants; cf. Fig. 1. The speedup of the divide-and-
conquer approach is slightly lower. Most desktop com-
puters have four cores and in such a setting the mark-
and-cut variant produces a speedup of about 2–3. Our
implementations are not (yet) tuned and, likely, there
is room for further improvement.
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Figure 1: Speed-up obtained by Mark and Cut shown
as a function of input size for eight cores.
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